+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
SUM(cons(x, l)) → +1(x, sum(l))
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → SUM(l1)
*1(s(x), s(y)) → +1(*(x, y), +(x, y))
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
SUM(app(l1, l2)) → SUM(l2)
*1(s(x), s(y)) → *1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
*1(*(x, y), z) → *1(x, *(y, z))
SUM(cons(x, l)) → SUM(l)
+1(s(x), s(y)) → +1(x, y)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(cons(x, l)) → PROD(l)
+1(+(x, y), z) → +1(y, z)
PROD(app(l1, l2)) → PROD(l1)
*1(s(x), s(y)) → +1(x, y)
APP(cons(x, l1), l2) → APP(l1, l2)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
SUM(cons(x, l)) → +1(x, sum(l))
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → SUM(l1)
*1(s(x), s(y)) → +1(*(x, y), +(x, y))
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
SUM(app(l1, l2)) → SUM(l2)
*1(s(x), s(y)) → *1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
*1(*(x, y), z) → *1(x, *(y, z))
SUM(cons(x, l)) → SUM(l)
+1(s(x), s(y)) → +1(x, y)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(cons(x, l)) → PROD(l)
+1(+(x, y), z) → +1(y, z)
PROD(app(l1, l2)) → PROD(l1)
*1(s(x), s(y)) → +1(x, y)
APP(cons(x, l1), l2) → APP(l1, l2)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
SUM(cons(x, l)) → +1(x, sum(l))
*1(*(x, y), z) → *1(y, z)
SUM(app(l1, l2)) → SUM(l1)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(s(x), s(y)) → +1(*(x, y), +(x, y))
SUM(app(l1, l2)) → SUM(l2)
*1(s(x), s(y)) → *1(x, y)
SUM(cons(x, l)) → SUM(l)
*1(*(x, y), z) → *1(x, *(y, z))
+1(+(x, y), z) → +1(x, +(y, z))
+1(s(x), s(y)) → +1(x, y)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
+1(+(x, y), z) → +1(y, z)
PROD(app(l1, l2)) → PROD(l1)
*1(s(x), s(y)) → +1(x, y)
APP(cons(x, l1), l2) → APP(l1, l2)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
APP(cons(x, l1), l2) → APP(l1, l2)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APP(cons(x, l1), l2) → APP(l1, l2)
cons2 > APP1
APP1: [1]
cons2: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+1(s(x), s(y)) → +1(x, y)
+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
Used ordering: Combined order from the following AFS and order.
+1(s(x), s(y)) → +1(x, y)
+^11 > +2
+^11: [1]
+2: [2,1]
0: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+1(s(x), s(y)) → +1(x, y)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(s(x), s(y)) → +1(x, y)
s1 > +^11
+^11: [1]
s1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
SUM(cons(x, l)) → SUM(l)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
Used ordering: Combined order from the following AFS and order.
SUM(cons(x, l)) → SUM(l)
app2 > SUM1
SUM1: [1]
app2: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM(cons(x, l)) → SUM(l)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM(cons(x, l)) → SUM(l)
cons2 > SUM1
SUM1: [1]
cons2: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
*1(*(x, y), z) → *1(y, z)
*1(s(x), s(y)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(*(x, y), z) → *1(y, z)
*1(s(x), s(y)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*^12 > *2 > 0 > s1
*^12 > *2 > +2 > s1
*^12: [1,2]
+2: [1,2]
s1: [1]
0: multiset
*2: [1,2]
*(0, x) → 0
+(+(x, y), z) → +(x, +(y, z))
+(0, x) → x
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(x, 0) → 0
+(x, 0) → x
+(s(x), s(y)) → s(s(+(x, y)))
*(*(x, y), z) → *(x, *(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PROD(app(l1, l2)) → PROD(l2)
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l1)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD(app(l1, l2)) → PROD(l2)
PROD(app(l1, l2)) → PROD(l1)
Used ordering: Combined order from the following AFS and order.
PROD(cons(x, l)) → PROD(l)
app2 > PROD1
PROD1: [1]
app2: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
PROD(cons(x, l)) → PROD(l)
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD(cons(x, l)) → PROD(l)
cons2 > PROD1
PROD1: [1]
cons2: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
+(x, 0) → x
+(0, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
*(x, 0) → 0
*(0, x) → 0
*(s(x), s(y)) → s(+(*(x, y), +(x, y)))
*(*(x, y), z) → *(x, *(y, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → s(0)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))